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ABSTRACT

The motivation of this thesis is the study of numerical methods for solving dynamic

programming problems. In the first chapter, I present methods for reducing the compu-

tational cost imposed by the curse of dimensionality in the action and state space that

occurs when solving for a Markov perfect equilibrium (MPE). These methods circumvent

the computational problems for Markov perfect models in which the size of the state space

or action space is large. This is because these methods are able to overcome the issue with

approximating a highly non-linear or even discontinuous value function and thus allow the

algorithm to use a small subset of the state space to approximate the rest of the value func-

tion. I use a model from the dynamic IO literature which is a dynamic oligopoly model with

heterogeneous firms to evaluate the difference between using multidimensional Chebyshev

polynomials and using artificial neural nets (ANN) for approximation, and present issues

that arise when trying to use the gradient of the value function for approximations with

Hermite interpolation. I also discuss how value function approximation with continuous

functions can be used to find the optimal action quickly through the use of gradient based

optimization techniques.

In the second chapter I examine the use of reinforcement learning to solve a high di-

mensional operations research problem. This methodology expands upon the value function

approximation used in the first chapter through the use of an algorithm that uses both a

value function approximation and a policy function approximation. I focus on the traveling

salesman problem (TSP) and train recurrent neural networks (RNN) that, given a set of city

ii
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coordinates, output a probability distribution over the next city to visit in a route. Using

route labels provided by Google’s OR-Tools TSP solver I train multiple network architec-

tures using supervised learning. I compare the performance of these architectures to the

performance when using the route length as a reward signal to train the networks using

reinforcement learning. I show that supervised learning is a useful tool for the optimiza-

tion of hyperparameters that will be used in reinforcement learning, and to evaluate the

performance improvement of an architecture change. I also provide evidence that while

reinforcement learning is a more general optimization framework than using handcrafted

heuristics, in practice it is necessary to build a neural network architecture specific to the

problem of interest and that a network architectures ability to be trained using supervised

learning does not guarantee the ability to be trained using reinforcement learning.

iii
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PUBLIC ABSTRACT

The motivation of this thesis is to research how to use recent advancements in applied

mathematics, and computer science to allow for economic and operations research models

to study more complex environments. In the first chapter I use a model from the economic

field of industrial organization that has many firms competing in a market. Each firm has

a product that consumers think has a different level of quality. Since there are so many

possible combinations of each firm having a specific quality level the model can only be

solved when there are only a few firms. I use the recent advancements in computer science

with the use of artificial neural networks (ANN) to expand the number of firms that can be

in the model. I also discuss how to combine this method with other advancements in applied

mathematics and why ANN are an improvement over the current methodology.

In the second chapter I use the recent advancements in recurrent neural networks

(RNN), and reinforcement learning to solve the traveling salesman problem (TSP). In this

problem there are many cities and a salesman must decide the route through all the cities and

back home in the shortest possible distance. This is one of the oldest problems in operations

research and through many years several methods have emerged that perform very well on

this problem. These methods took many years to develop and they do not perform well

when the TSP’s problem statement is changed slightly. Therefore there is interest in using

RL to automatically discover these methods for the TSP and other similar problems. In

the second chapter I detail how the implementation of the RNN must be built specifically

for the problem of interest which limits how much more general this methodology is over

iv
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existing methods, how to use supervised learning (SL) to get the correct settings so that RL

will work, and discuss the issue of reproducibility in RL.

v
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1

CHAPTER 1
VALUE FUNCTION APPROXIMATION FOR DYNAMIC GAME MODELS

1.1 Introduction

The analysis of dynamic industrial organization (I.O.) models is limited by the com-

putational burden of computing equilibrium policies. These policies are typically computed

by solving for the fixed point of a function whose domain is a subset of Rn, where n is the

dimension of the state space (Pakes & McGuire, 1992). In dynamic I.O. models, the dimen-

sion of the state space is typically the number of potentially active firms. In the Ericson and

Pakes (1995) framework, each firm’s state is an element of a discrete grid with m possible

values. If we impose that the policy functions are symmetric, so that each firm has the same

policy function, then the number of elements in the state space grows exponentially in the

number of states per firm. Additionally, if there are multiple decision variables, the number

of objective function evaluations required to find the optimal policy grows exponentially in

the number of decision variables. These curses of dimensionality in the state and action

spaces limit the applications that the Ericson and Pakes (1995) framework can be applied to

(Aguirregabiria and Nevo (2013); Doraszelski and Judd (2007); Pakes and McGuire (2001);

Weintraub, Benkard, and Van Roy (2008)).

This paper presents adaptations to the existing methodology that circumvent these

computational problems for Markov Perfect models in which the size of the state space or

action space is large. This is because these adaptations are able to overcome the issue with

approximating a highly non-linear or even discontinuous value function and thus allow the
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algorithm to use a small subset of the state space to approximate the rest of the value

function.

In this paper, I present methods for reducing the computational cost imposed by the

curse of dimensionality in the action and state space that occurs when solving for a Markov

Perfect Equilibrium (MPE).

The rest of the paper is organized as follows. In Section 1.2, I outline the dynamic

industry model and describe the relationship between my work and previous literature. In

Section 1.3, I present methods for avoiding the curse of dimensionality in the state space,

the difference between using multidimensional Chebyshev polynomials and using Artificial

Neural Nets (ANN) for approximation, and issues that arise when trying to use the gradient

of the value function for approximations. Section 1.4 presents conclusions and directions

for future research. Finally, in Section A.1, I present methods for avoiding the curse of

dimensionality in the action space and how it relates to value function approximation.

1.2 Model

In order for their model to be tractable, Ericson and Pakes (1995) make assumptions

about firm’s behavior. In this paper I will define a model as tractable if there are meth-

ods that use a reasonable amount of computational resources to solve for an equilibrium

or analytical tools can be used to solve for an equilibrium. In an industry with n firms,

each firm is assumed to have a single dimensional state variable ωj, where j ∈ {1, . . . , n},

that determines the relative position of a firm in an industry compared to the strength of

competition outside of the industry. In this paper ωj represents the quality to consumers of
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firm j’s product. States are assumed to be discrete and typically ωj ∈ Z+. This assumption

reduces the multidimensional heterogeneity that exists between firms in the real world to

a single dimension. Additionally, the discretization of the state space reduces the accuracy

with which industry dynamics can be represented.

Let S = {ω1, . . . , ωn} ∈ Zn+ denote the industry state. It is assumed that current

profits for firm j are weakly decreasing in S−j and weakly increasing in ωj. Therefore an

increase in firm j’s own state improves its position in the market and if other firms increase

their own state, firm j’s current period profits will decrease.

The state S changes stochastically conditional on the current state, and actions of

every firm in the industry. Firms’ choose their actions to maximize the expected present

discounted value of profits as a function of the state S. To further reduce the complexity of

the framework Ericson and Pakes (1995) make the necessary assumptions to assure that the

state follows a Markov process. Thus firms are restricted to Markovian strategies given the

current state and do not directly observe the actions of the other firms.

While these assumptions limit the framework’s ability to generate the variation ob-

served in the data they are necessary to construct a more tractable model however; even

after these assumptions it is not computationally tractable to solve industry model instances

with more than a few firms (Weintraub et al., 2008). To further reduce the complexity of

the framework so that it is computationally tractable, Doraszelski and Satterthwaite (2010)

impose additional symmetry restrictions. By adding additional structure to the framework

they prove the existence of a symmetric equilibrium in pure strategies.

In this paper firm j’s value function when in industry state S will be expressed by
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Vj(S) = max
µj∈Γ(S)

{π(S, µj, µ−j) + βE[Vj(S
′)|S, µj, µ−j)]}

where µj is the policy of firm j which will could include the pricing, investment, and

entry or exit decision, Γ(S) is the set of feasible actions in state S, µ−j is a vector containing

the policies of all firms other than firm j, and S ′ is the state transitioned to, conditional on

S, µj and µ−j.

1.2.1 Numerical example

Throughout this paper I will refer to a numerical example that is identical to the

example used in Doraszelski and Judd (2012). The example is a simplified version of the

Pakes McGuire quality ladder model (Doraszelski & Judd, 2012). I will focus on the case

where there are two firms choose the price of their product and quantity of investment

to improve their state. The state variable S = {ω1, ω2} represents the vertically dif-

ferentiated quality of their product. Let ωj ∈ {1, . . . , 18} and the approximation nodes

Si = {ω1,i, ω2,i} = {
⌊
i

18

⌋
, i mod 18} for i = 1, . . . , 324. Consumer l’s utility function for

product j is given by ulj = g(ωj)−pj + εlj where εlj is an extreme type 1 error. The function

g(ω) maps the discrete states, ωj, to the quality consumers perceive for product j. Both

Pakes and McGuire (1992) and Doraszelski and Judd (2012) used the function

g(ω) =


3ω − 4 if ω ≤ 5

12 + ln(2− exp(16− 3w)) if ω > 5

however, as Figure 1.1 shows this function is not defined for a range between 5 and 6.
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This causes a problem when attempting to approximate the model with a continuous state

space. Therefore, I will use the function

g(ω) =
14.7

1 + exp(4− 1.2ω)

which Figure 1.1 shows is continuous and a close approximation of the original func-

tion.

Figure 1.1: Plot of both versions of g(ω)

The single period objective function for firm 1 as a function of the industry state,

S, the actions of firm 1, µ1, and the other firm’s actions, µ2, can be expressed with the
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following equation. Let µj = {pj, xj}, where pj represents the price charged to consumers

for product j and xj represents the level that firm j invests into the quality of their product.

M represents the market size, and c represents the marginal cost of production. The single

period payoff function is

π1(S, µ1, µ2) = M
exp(g(S1)− p1)

1 + exp(g(S1)− p1) + exp(g(S2)− p2)
(p1 − c)− x1.

In order to calculate the expected future value for a policy µ1 let

E[V̂ (S ′)|S, µ1, µ2] =
m∑

ω′
1=1

m∑
ω′
2=1

V̂ ({ω′1, ω′2})Pr(ω′1|ω1, x1)Pr(ω′2|ω2, x2),

where the probability of transitioning to the state ω′ given investment x and current state

ω is given by

Pr(ω′|ω, x) =



(1−δ)αx
1+αx

if ω′ = ω + 1

1−δ+δαx
1+αx

if ω′ = ω

δ
1+αx

if ω′ = ω − 1

,

Pr(ω′|1, x) =


(1−δ)αx

1+αx
if ω′ = 2

1+δαx
1+αx

if ω′ = 1

,

Pr(ω′|m,x) =


1−δ+αx

1+αx
if ω′ = m

δ
1+αx

if ω′ = m− 1

,
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and δ represents the probability that the outside alternative increases in quality, and α

represents the efficacy of investment in generating increases in efficiency 1. Through out the

paper I will reference the MPE of this model found when using the parameters in Pakes and

McGuire (1992) which are, β = 0.925, M = 5, c = 5, α = 3, and δ = 0.7.

1.2.2 Pakes-McGuire algorithm

The Pakes and McGuire (1992) algorithm is an iterative backward solution method

which uses numbers stored in memory from the previous iteration to calculate an update

to those numbers and runs until the updated numbers satisfy a convergence condition. At

the start of the algorithm N approximation nodes, {Si}Ni=1, must be chosen. Each node

represents a possible industry state that can be visited in the model. It is also necessary to

initialize an ε > 0 for the convergence criterion and to initialize the value function.

The algorithm uses the assumption that firms use symmetric strategies so that only

one value function needs to be calculated. For notational purposes I will denote the firm

for which the value function is calculated as firm 1. Since we are interested in finding

only symmetric MPE, the Pakes and McGuire (1992) algorithm uses the calculation of firm

1’s policies in iteration k-1 to determine the policies of all other firms in iteration k. For

example, in the numerical example the pricing and investment policy for firm 2 in state Si,

and iteration k is represented as µki,−1 = {pki,2, xki,2} = {pk−1
i′,1 , x

k−1
i′,1 } where i′ is such that if

Si = {ω1, ω2} then Si′ = {ω2, ω1}.

1A key property of this choice of transition probabilities, convexity of the cdf (or its integral)
in the investment variable, plays a key role in establishing existence and properties of Markov
equilibrium/policies in related contexts in economic dynamics see (Amir, 1996a, 1996b, 1997).
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More generally, for each iteration k the algorithm uses firm 1’s policy from last iter-

ation, µk−1
1 to determine the policy that other firms will choose, µk−1, and then calculates µk1

based on µk−1 and vk−1
i . Then the algorithm checks a convergence condition by evaluating

the distance between the previous iteration’s value function and the current value function.

Algorithm 1 Pakes McGuire Algo

1: procedure Choose N approximation nodes {Si}Ni=1, error tolerance for value function

updating ε.

2: Let v0
i = 0 for i = 1, . . . , N

3: while
∥∥vk1 − vk−1

1

∥∥ > ε(1−β)
2β

do

4: for i = 1, . . . , N do

5: Solve the Bellmann equation and store in memory vki,1 and µki,1

vki,1 = max
µki,1∈Γ(Si)

π(Si, µ
k
i,1, µ

k−1
i,−1) + βE[V̂ (S ′)|Si, µki,1, µk−1

i,−1)]

6: end for

7: Let k = k + 1

8: end while

9: end procedure

The CPU run time of this algorithm can be approximated with the following formula.

Let K represent the number of value function iterations required for convergence, N the

number of states in the state space, and fevals be the number of function evaluations required
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to find the optimal policy

CPU run time = (K)(N)(fevals)(Computation time of f)

H(Si) = max
µki,1∈Γ(Si)

f(Si, µ
k
i,1)

f(Si, µ
k
i,1) = π(Si, µ

k
i,1, µ

k−1
i,−1) + βE[V̂ (S ′)|Si, µki,1, µk−1

i,−1)]

. (1.1)

This algorithm suffers from several computational issues. There are curses of dimen-

sionality in both the state space and action space that can cause the algorithm to take too

long to run. For a fixed number of iterations required for convergence, which I will denote

as K, if the industry of interest has just 10 firms then N can be too large. In the numerical

example in this paper, each firm has 18 possible states and so for 10 firms, the size of the

state space would be 1810 = 3, 570, 467, 226, 624 = N . If the time it takes to compute f(S, µ)

takes just 0.01 seconds then it would take 413,248 days to just evaluate the function once

in each state. There are many different ways to decrease the computational cost imposed

by increasing the number of firms, and in Section 1.3 I will show several methods of value

function approximation to overcome this issue.

In applications of the Ericson and Pakes (1995) framework firms can have many

decision variables. Typically a firm chooses the price of its product, how much to invest to

improve their state, and whether to enter or exit. However many firms can have a much

more complex decision making process. In the numerical example used in this paper firms

just choose the price of their product and level of investment to improve the quality of their

product. In order to choose the optimal action using a simple grid search procedure with

grid points separated by a 1e-5 space there would need to be a 400,000 by 500,000 grid
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representing each possible choice that the firm could make (since in equilibrium the optimal

price varies from 6 to 11 and the optimal level of investment varies from 0 to 4). Thus, the

number of function evaluations per state per iteration, which I will denote as fevals, would

be 200,000,000,000. An algorithm implemented this way would take 23,148 days to find the

optimal action in a single state in a single iteration. There are many different methods that

allow the optimal action to be found with a high degree of accuracy very quickly and Section

A.1 discusses how to use these methods to decrease fevals.

In many applications the run time required to compute an equilibrium determines

the way in which the theoretical model was written (Benkard, Jeziorski, & Weintraub, 2015;

Doraszelski & Pakes, 2007). Often, this leads to including only 2-4 firms, or using a profit

function that can be computed outside the algorithm’s main loop to reduce the number of

decision variables.

Thus in order to develop richer models of industry dynamics that are a closer repre-

sentation of reality, it is important to understand the factors that determine a model’s run

time and the methods that can be used to make a model computationally tractable.

1.3 Avoiding the curse of dimensionality in state space

The curse of dimensionality in the state space is often a more difficult issue to over-

come. Typically, it is easier to solve a dynamic programming model computationally when

the state space is discrete rather than continuous and the dimension of the state space is

small. This is true in the Ericson and Pakes (1995) framework. However, when the state

space is large it is computationally more efficient to approximate the discrete state space
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with continuous functions. This can be seen in the following graph which compares the run

time for this model when it had a discrete grid state space and when the state space is

continuous with a Artificial Neural Network Approximation.

Figure 1.2: Plot showing run time for n firms

This plot shows that as the dimension of the state space increases that there is an

exponential increase in the difference in run time between the method that used a discrete

grid and the method that used a continuous approximation. The method with a continuous

state space is able to obtain the reduction in computational cost by reducing the number

of states that need to be visited for each dimension by approximating the value function

between observed states.

In order to approximate the value function there are many different methods that can

be used. A simple example is approximating the function v(S) = sin(S) where S ∈ [0, 4π].

Using the Lagrange data, {Si, vi}Ni=1, where Si = 4πi
N

, vi = sin(Si), and N = 6 then there
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are many appropriate interpolation methods. Pakes and McGuire (1992) discussed the use

of polynomial interpolation. Polynomial interpolation with Chebyshev polynomials uses a

sum of orthogonal polynomials to approximate the function v.

Chebyshev polynomials can be defined using a recursive definition or using a trigono-

metric definitive. Using the trigonometric definition, a n degree Chebyshev polynomial of

the first kind is defined as

Tn(S) = cos(n arcos(
2S − Smin − Smax
Smin − Smax

)).

If Smin = −1 and Smax = 1 then the first four polynomials will be

T0(S) = 1

T1(S) = S

T2(S) = 2S2 − 1

T3(S) = 4S3 − 3S

T4(S) = 8S4 − 8S2 + 1

,
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Figure 1.3: The first four Chebyshev polynomials

and then approximation can be written as V̂ (S; b) =
∑n

k=0 bkTk(S). When interpo-

lating a function with Chebyshev polynomials it is important to choose the approximation

nodes based off of the roots of the polynomials. The Chebyshev nodes for one dimension

are given by Si = (zi + 1)(Smax − Smin)/2 + Smin and zi = −cos((2i − 1)π/(2m)) where m

is the number of approximation nodes. In order to approximate the function v(S) using the

Lagrange data {Si, vi}Ni=1, where vi = v(Si), it is necessary to solve for the coefficients, b,

using

min
b

N∑
i=1

(V̂ (Si; b)− vi)2.
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This problem can be solved easily with OLS or with the closed form Chebyshev

Approximation Formula. This approximation method has a few cases where it performs

poorly. One case where the approximation is poor is when N is too small however, for a

fixed N the approximation can be improved by fitting the polynomial approximation using

Hermite data. Hermite data consists of the approximation node, the function evaluated at

the approximation node and also the gradient of the function evaluated at the approximation

node. In order to fit the Chebyshev polynomial using Hermite data, {Si, vi, di}Ni=1, where

di = dv(Si)
dS

, the coefficients are found by solving the following OLS problem.

min
b

N∑
i=1

(
(V̂ (Si; b)− vi)2 + (

∂V̂ (Si; b)

∂S
− di)2

)
.

Chebyshev polynomials are an attractive choice for fitting a function using Hermite

data since the derivative of type 1 Chebyshev polynomials are a function of type 2 Chebyshev

polynomials. Since ∂Tn(S)
∂S

= nUn−1(S) and type 2 Chebyshev polynomials can be defined by

the following equation.

Un(S) =
sin((n+ 1)arccos(2S−Smin−Smax

Smin−Smax ))

sin(arccos(2S−Smin−Smax
Smin−Smax ))

.

By incorporating the gradient information a function can be approximated to a given

degree of accuracy with fewer approximation nodes. Figure 1.4 shows how Hermite approxi-

mation is able to approximate the function sin(x) with four approximation nodes to a much

better degree of accuracy than the Lagrange approximation.
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Figure 1.4: Lagrange and Hermite Chebyshev approximation of Sin(x)

Another case where polynomial approximations perform poorly is when there are large

discontinuities or non-linearities in the function that is being approximated. When trying

to approximate a discontinuous function polynomial approximations can often show the

Gibbs phenomenon which is when the approximating polynomial overshoots or undershoots

the function around a jump discontinuity. This overshooting/undershooting persists even

when the number of approximation nodes increases. This can be seen in Figure 1.5 when

Lagrange and Hermite Chebyshev polynomials are used to approximate the function f(x)

with 10 approximation nodes.
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f(x) =


1 if x ≤ 1/2

0 otherwise

(1.2)

Figure 1.5: Lagrange and Hermite Chebyshev approximation of f(x)

In order to overcome this issue it is necessary to use an approximation techinque that

is able to approximate the function locally. Local approximation can be done by fitting a

piece-wise linear function, but these functions are not smooth and the kink that occurs at

each approximation node can cause problems when used for value function approximation.

Cubic splines are smooth and can approximate the function locally however this method
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does not generalize to n dimensions.

Polynomials are an attractive choice for approximating the value function since they

are universal approximators and so they can fit all functions however, in practice polynomials

often require a computationally prohibitive amount of data to fit some functions to a desired

degree of accuracy. Park and Sandberg (1991) show that Artificial Neural Nets (ANN) are

also universal approximators. Artificial Neural Nets are able to approximate functions locally

to avoid the Gibbs phenomenon, and also scale very easily to approximating multidimensional

functions. There has also been a large influx of computationally efficient software packages

for training and evaluating neural nets. For an introduction to ANN please refer to Jain,

Mao, and Mohiuddin (1996).

Figure 1.6: ANN approximation of f(x)
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Figure 1.6 shows how a ANN with a single hidden layer with 10 nodes was able to ap-

proximate the function without the same issues that Chebyshev polynomials had. The graph

was created using the same ANN architecture, trained for the same number of iterations, but

each of the 5 ANN started out with a different set of random initial weights. This figure also

shows a drawback of using ANN, which is that the quality of the approximation can depend

on the initialization of the parameters. This can be seen with the fifth approximation. They

also sometimes get stuck in a local minimum and provide very bad approximations. Zain-

uddin and Pauline (2008) showed that using different network structures such as a Radial

Basis Function Network or a Wavelet Neural Network can improve the accuracy of ANN

by reducing the frequency that the ANN gets stuck in a local minimum. Llanas, Lantarón,

and Sáinz (2008) show that ANN can approximate any discontinuous function with a single

hidden layer and Llanas and Lantarón (2007) also show that the Hermite approximation

problem can be solved using ANN.

1.3.1 Approximating the value function with Lagrange interpolation

Using either Chebyshev polynomials or ANN to approximate a function allows for an

accurate representation of a continuous function using a relatively small set of points. In the

following algorithm these techniques will be used to approximate the value function of firm

1. By approximating the value function, it is possible to reduce the number of approximation

nodes required to solve for an equilibrium.
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Algorithm 2 Pakes McGuire Algo with L-VFA

1: procedure Choose N approximation nodes {Si}Ni=1, error tolerance for value function

updating ε.

2: Initialize b, and {µ0
i,−1}Ni=1.

3: while
∥∥∥V̂ k

1 − V̂ k−1
1

∥∥∥ > ε(1−β)
2β

do

4: for i = 1, . . . , N do

5: Solve the Bellmann equation and store in memory V̂ k
i,1 and µki,1

vki,1 = max
µki,1∈Γ(Si)

π(Si, µ
k
i,1, µ

k−1
i,−1) + βE[V̂ (S ′; b)|Si, µki,1, µk−1

i,−1)]

6: Minimize the mean squared error and store in memory b

min
b∈Ω

N∑
i=1

(
vki,1 − V̂ (Si; b)

)2

7: Let k = k + 1

8: end for

9: end while

10: end procedure

The Pakes McGuire algorithm with Lagrange value function approximation (L-VFA)

replaces the discretized value function with a continuous approximation. Since the value

function can now be approximated by a continuous and differentiable function it is now

possible to solve for an equilibrium of a model that uses a continuous state space. This is an

attractive feature since empirically the return from investment is continuously distributed,
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and since firms do not have a set of predetermined discrete levels of quality and so VFA

allows for a more realistic theoretical model in addition to a more computationally efficient

method for solving for an equilibrium.

Using the numerical example in this paper I compared the equilibrium found using

two methods on six different grids of approximation nodes. The first method was using

multidimensional Chebyshev polynomials to approximate the value function and the second

method was a ANN with a single hidden layer. When using the Chebyshev polynomials I

used a grid based on the location Chebyshev nodes which are defined by xi = (zi+1)(xmax−

xmin)/2 + xmin and zi = −cos((2i − 1)π/(2m)) where m is the number of approximation

nodes per firm. When using the ANN I used an equidistant grid of m points per firm. I

examined the equilibrium value function and policy functions found when m = 6, 12, and 18.

The results show that the ANN was able to approximate the value function to a high

enough degree of accuracy that the equilibrium policy functions maintained their qualitative

structure when m = 6, 12, and 18. The multidimensional Chebyshev approximation was able

to preserve the policy function’s qualitative structure when m = 12, and 18 however, when

m = 6 the value function failed to converge. The approximation failed to converge because

when the value function increases very quickly when firm 2’s state is at a low value of about

3 and firm 1’s state is between 3 and 6. This large rate of increase leads the approximation

to exhibit the Gibbs phenomenon which can be seen in Figure A.2 and more prominently

in Figure A.3 2. This is especially an issue because during the value function iterations the

2https://github.com/wmjones/VFA-for-dynamic-gamesMy Github Repository has the animated
gifs of each of the 6 examples where each frame of the gif is a value function iteration, source code,
and an easy to use makefile.
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region that was overshot is reinforced and the approximation error propagates through the

subsequent value function iterations.

These results suggest that ANN are able to approximate the value function to a

higher degree of accuracy than Chebyshev polynomials when the number of approximation

nodes is reduced. This is useful since if Chebyshev polynomials can approximate it with a

sufficient degree of accuracy when m = 12 and ANN can approximate the value function

with a sufficient degree of accuracy when m = 6, then with 10 firms VFA with Chebyshev

polynomials is approximately 60 times faster than a method that uses m = 18 and VFA

with ANN is approximately 60,000 times faster than a method that uses m = 18.

L-VFA can also be easily combined with other methods for reducing the size of the

state space. For example, it is easy to use parallelization to reduce the computational cost of

the algorithm by finding the value of each state in parallel. This approximately divides the

run time of the algorithm by the number of threads that evaluation of each state is parallelized

over. In the numerical example I parallelized over 8 threads to reduce computation time.

1.3.2 Approximating the value function with Hermite interpolation

Similar to how the approximation accuracy of one dimensional functions can be im-

proved by fitting Hermite data rather than Lagrange data, the value function can be ap-

proximated using Hermite data. Cai and Judd (2015) discuss a method for easily obtaining

the gradient of the value function in order to use Hermite data to approximate the value

function. Cai and Judd (2015) showed that Hermite value function approximation (H-VFA)

was able to either produce a higher accuracy in a given amount of time or attain the same
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accuracy with much less computation time when compared to L-VFA.

If the right hand side of the Bellman equation is written as

H(S) = max
µ

f(S, µ)

s.t. g(S, µ) = 0,

h(S, µ) ≥ 0

(1.3)

,

then the gradient of H(S) is provided by

∂H(S)

∂Sj
=

∂f

∂Sj
(S, µ∗(x)) + λ∗1(S)T

∂g

∂Sj
(S, µ∗(S)) + λ∗2(S)T

∂h

∂Sj
(S, µ∗(S)).

For j = 1, . . . , n and n is the dimension of S. The computation of the gradient

requires finding several derivatives and is difficult to compute. However, the problem can be

rewritten by adding in the variable y such that

H(S) = max
µ,y

f(y, µ)

s.t. g(y, µ) = 0,

h(y, µ) ≥ 0,

Sj − yj = 0, j = 1, . . . , n.

(1.4)

.

Then the gradient of H(S) is provided by

∂H(S)

∂Sj
= τ ∗j (S)
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where τ ∗j (S) is the Lagrange multiplier for the constraints Sj − yj = 0.

There are several derivative-free constrained optimization software libraries that pro-

vide along with the solution to the maximization problem the Lagrange multiplier for each

constraint such as MATLAB’s fmincon function. This method allows for an easy method to

obtain the gradient of the value function and thus able to use the Hermite data, {Si, vi, di}Ni=1,

where di is the gradient vector evaluated at Si, to approximate the value function.

The coefficients to approximate the value function using multidimensional Chebyshev

polynomials are obtained by solving the following equation and the notation for multidimen-

sional Chebyshev polynomials is presented in Appendix A.3.

min
b

{ N∑
i=1

(
vi −

∑
0≤|α|≤r

bαTα(Si)
)2

+
N∑
i=1

n∑
j=1

(
di,j −

∑
0≤|α|≤r

bα
∂

∂Sj
Tα(Si)

)2}
.

While the L-VFA algorithm presented in Cai and Judd (2015) is easily added to

the Pakes McGuire Algorithm, a direct adaptation of the H-VFA algorithm has additional

complications.
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Algorithm 3 Pakes McGuire Algo with H-VFA using Chebyshev polynomials

1: procedure Choose N approximation nodes {Si}Ni=1, error tolerance for value function

updating ε.

2: Initialize b, and {µ0
i,−1}Ni=1.

3: while
∥∥∥V̂ k

1 − V̂ k−1
1

∥∥∥ > ε(1−β)
2β

do

4: for i = 1, . . . , N do

5: Obtain the value function at Si, and gradient by solving Equation (1.3) or

Equation (1.4). Then store in memory vki,1, µki,1, and dki .

6: Minimize the mean squared error and store in memory b using Hermite data

{Si, vi,1, di,1}Ni=1 by solving

min
b

{ N∑
i=1

(
vi −

∑
0≤|α|≤r

bαTα(Si)
)2

+
N∑
i=1

n∑
j=1

(
di,j −

∑
0≤|α|≤r

bα
∂

∂Sj
Tα(Si)

)2}
7: Let k = k + 1

8: end for

9: end while

10: end procedure

Step 5: in this algorithm causes complications. Since the reaction of other firms is

taken into account, a firm’s decision in the gradient calculation using Equation 1.3 would

require the calculation of the gradient of the policy function. This is because the policy that

the other firms choose depends on what the industry’s state is. Thus in order complete Step

5: using Equation 1.3 it is necessary to determine the gradient of the policy function. Since
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the analytical gradient of the policy function cannot be obtained due to it being the argmax

of the right hand side of the bellman equation, it is necessary to numerically approximate the

gradient. This can be done easily with the central difference method. However the accuracy

of the central difference method is limited by the step size which in this context is the distance

between two approximation nodes. Thus in order to obtain an accurate approximation of the

policy function there would need to be more approximation nodes which prevents H-VFA

from decreasing the number of approximation nodes. This also prevents the use of more

efficient optimization methods such as the L-BFGS algorithm.

If Step 5: is calculated using (1.4) then there can be an issue with the numerical

optimization method converging. This is due to the fact that a derivative free algorithm is

used to calculate the solution and that by adding in an additional n decision variables {y}nj=1

the number of function evaluations required to find the optimal action will grow significantly.

Therefore the computational cost of finding the optimal action may cause the Pakes Mcguire

Algorithm with H-VFA to be slower than Pakes Mcguire Algorithm with L-VFA.

It is also easy to incorporate other methods to reduce the size of the state space.

Pakes and McGuire (1992) show that

V (ω1, ω2, . . . , ωN) = V (ω1, ωπ(2), . . . , ωπ(n))

for any n − 1 dimensional vector π = [π(2), . . . , π(n)] which is a permutation of (2, . . . , n).

Therefore, the value function does not need to be evaluated at each distinct approximation

node but instead only needs to be evaluated at the nodes where ω2 ≥ ω3, . . . ,≥ ωn. This

causes the number of approximation nodes in the state space to be calculated as (m+n−1)!
(m−1)!n!

instead of mn. For 10 firms and m = 18 this leads to N = 8, 436, 285, when m = 12
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this leads to N = 352, 716 and when m = 6 this leads to N = 3, 003. Thus if it takes

approximately 0.01 seconds to evaluate the function f , it will now only take 23.4 hours to

evaluate the function f(S, µ) once in each state when m = 18, 0.98 hours to it when m = 12

and only 0.008 hours to do it when m = 6. This reduction in computation time allows for

the exploration of richer models with larger state spaces which were previously unable to be

analyzed due to computational constraints.

1.4 Conclusion

I have shown that by adding value function approximation to the Pakes McGuire

algorithm it is possible to reduce the number of states needed per firm and in A I show how

to incorporate numerical optimization methods with value function approximation to reduce

the curse of dimensionality in the action space. I have also discussed the benefits that ANN

have over multidimensional Chebyshev polynomials for value function approximation and

the complications that arise from attempting to fit the value function using Hermite data

in dynamic game models. These conclusions are supported by a numerical example of the

Pakes McGuire quality ladder model.

The L-VFA numerical example when fit with ANN used a simple single hidden layer

ANN. Future research could examine the benefits to using more complex network structure

such as deep neural networks. Liang and Srikant (2016) show that the number of neurons

needed to approximate a function decreases exponentially in the number of layers in the

network. Future research could also incorporate other methods from approximate dynamic

programming such as using post-decision state sampling to reduce the computational cost
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of computing the expected value, or using ANN to construct a continuous implementation

of the dynamic lookup table presented in Ulmer, Mattfeld, and Köster (2017).



www.manaraa.com

28

CHAPTER 2
CHOOSING THE RIGHT NEURAL NETWORK ARCHITECTURE FOR

THE TRAVELING SALESMAN PROBLEM

2.1 Introduction

The traveling salesman problem (TSP) is the oldest and one of the most well re-

searched combinatorial optimization problems. The TSP is the problem of finding the short-

est path through a set of geographically disbursed customers. In order to solve the TSP

one needs to search the space of possible routes through a graph to find the route with the

minimum total edge weights. Finding the optimal route in a TSP is NP-hard when the nodes

are located in R2 and the edge weights are the euclidean distance between two points. In

the TSP with 20 customers, which this paper focuses on, the problem’s state is drawn from

R2×20 and the action space includes 6.08× 1016 possible routes.

In practice, modern TSP solvers use heuristic methods chosen specifically for the

version of the TSP that is to be solved. Through decades of research and by evaluating

many different potential heuristics, the operations research literature has been able to develop

heuristics that perform well enough to solve the TSP with thousands of nodes. Unfortunately,

these heuristics often do not perform well when the TSP’s problem statement is altered

slightly or on other similar combinatorial optimization problems.

Machine learning offers an alternative to existing approaches that would allow for the

automatic discovery of heuristics which would remove the need for handcrafted heuristics

and methods that can be applied to multiple problem specifications. Most machine learning

methods rely on supervised learning, which trains a parameterized function by minimizing
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the loss between a predicted output and an optimal label. Labels are correct output for

a training data set that can be used to determine if the method’s predictions are correct.

However this method of training relies on access to optimal labels which are not available

for combinatorial optimization problems. This is because the objective is to train a neural

network so that it performs better to the current best approximation of the optimal policy

and not to simply replicate the existing methods performance.

Reinforcement learning (RL) provides a solution to this issue because it does not

require optimal labels to train but instead relies on reward feedback from the problem spec-

ification. Recent advancements in the RL literature have drawn widespread attention for

their ability to out perform human professionals. Silver et al. (2016) applied reinforcement

learning to approximate the optimal policy for the board game GO which is a dynamic game

with a state space containing 2.082× 10170 elements. While this framework did use some

labels obtained from previous games played by professionals Silver et al. (2017) was able to

train a policy that performs better than the previous version, beat every professional player

that it has faced, and does not use any labels obtained from human play. (Hessel et al., 2017)

applied reinforcement learning methods to approximate the optimal policy for 57 different

games played on the Atari 2600 console. These 57 problems are dynamic in nature with a

state space of 3, 932, 160 elements and no clear method for specifying an analytical reward

function. Hessel et al. (2017) was able to show that their application of RL methods are able

to train neural networks that perform better than humans on all 57 games.

The advancements in the RL literature and research showing the exceptional per-

formance on dynamic problems with large state spaces has motivated research into the
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application of these methods for many problems in the operations research field. Recently

multiple neural network architectures have been proposed to solve the TSP (Bello, Pham,

Le, Norouzi, & Bengio, 2016; Deudon, Cournut, Lacoste, Adulyasak, & Rousseau, 2018;

Nazari, Oroojlooy, Snyder, & Takáč, 2018; Vinyals, Fortunato, & Jaitly, 2015). However,

the degree to which the neural network architecture needs to be specialized to the problem of

interest to be trained using reinforcement learning has not been evaluated. Additionally, the

relationship between an architecture’s performance when trained using supervised and rein-

forcement learning is not well understood. This paper examines how performance changes

as an architecture is specialized to the problem of interest and how performance changes

based on the training methodology.

In order to determine the appropriate neural network architecture for a given problem

researchers evaluate many different possible architectures and make iterative changes to the

architecture in order to maximize performance. This papers shows that there is a major

complication when trying to select the appropriate neural network architecture that will

be trained using reinforcement learning. In Section 2.4 I present evidence that there is

often not the necessary feedback to iteratively improve the architecture until the network

is specialized enough to a given problem that it is able to improve performance through

training with reinforcement learning. This is due to the fact that the subset of architectures

that will effectively train on a given problem is very small compared to the number of

potential architectures and that when the architecture is not specialized enough the feedback

that the researcher observes is that the network simply does not improve while training is

taking place. This makes it difficult to evaluate the value of different changes to the neural
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network’s architecture when the neural network is not learning. Section 2.4 also presents

evidence that supervised learning can be used to provide feedback for hyperparameter and

network architecture choices so that the network can then be more efficiently trained using

reinforcement learning.

In Section 2.2 I review the background that is closely related to my work. In Section

2.3 I discuss the methodology I use to study the impact that architecture choice and training

methodology have on model performance. In Section 2.4 I discuss the results from the

experiments and in In Section 2.5 I present the conclusions and directions for future research.

2.2 Previous work

The Traveling Salesman Problem (TSP) is a well studied combinatorial optimization

problem and many exact and approximate methods have been developed to solve it. The

problem was first formulated in Menger (1932) and it is often used as a benchmark for

many optimization methods. The current best exact dynamic programming algorithm for

TSP has a complexity of O(2nn2) which makes it infeasible on problems larger than 40

points. While calculating the optimal route exactly is infeasible for most problems many

approximate methods that rely on heuristic approaches have been able to perform well

on problem instances with much more than 40 points. Modern TSP solvers, which rely on

handcrafted heuristics that determine how to navigate the space of feasible policies efficiently

are able to solve TSP instances with thousands of points.

Google’s vehicle routing problem solver (OR-Tools) is a state of the art TSP solver

which relies on a combination of local search algorithms and metaheuristics specifically
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crafted for the TSP. OR-Tools applies hand-engineered heuristics such as 2-opt to move

from one potential solution to the next and then uses a metaheuristic such as guided local

search, which escapes local minima by putting a penalty on solution features that are known

to decrease performance (Bello et al., 2016).

While these methods are very successful in solving the TSP the search heuristics

are often not successful for newly encountered problems. Because search algorithms have

the same performance when averaged over all problems, the appropriate heuristics for each

problem must be carefully selected. The difficulty of finding the best heuristics for each

problem has lead to research into finding a more general approach.

Motivated by recent success in using recurrent neural networks (RNN) with long-

short term memory cells (LSTM) to solve problems with a sequence for input and output

researchers have studied the application of RNN’s to the TSP (Sutskever, Vinyals, & Le,

2014). Please see Appendix B.2 for a brief description of RNNs, LSTM cells and links for

more details.

Training an artificial neural network is most commonly done using label of the correct

output however, for the TSP labels are not available. Labels could be generated using an

existing method but this would only allow for a replication in the existing method’s per-

formance. Reinforcement learning offers an alternative method to train the network which

does not require labels, or an analytical reward function. Reinforcement learning instead

trains the artificial neural network by interacting with an environment and attempting to

update parameters so that the reward obtained from the network’s policy is maximized.

Recent improvements in this field include increasing performance by combining multiple
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methods (Hessel et al., 2017), increasing the ability to use available computational resources

(Babaeizadeh, Frosio, Tyree, Clemons, & Kautz, 2016), improving sample efficiency (Schul-

man, Wolski, Dhariwal, Radford, & Klimov, 2017), and has lead to researchers attempting

to use reinforcement learning on new problems.

Recent research on the use of artificial neural networks to solve the TSP began with

Vinyals et al. (2015) which introduced a network architecture called a Pointer Network.

Vinyals et al. (2015) used a RNN with non-parametric softmaxes that was trained using

supervised learning and showed that this network architecture was capable of approximating

the optimal policy for the TSP 20. (Bello et al., 2016) showed that this approach was able

to be trained using reinforcement learning and further improved the performance of the

architecture presented by (Vinyals et al., 2015) through several different small architecture

changes and various post processing steps. Nazari et al. (2018) have made alterations to the

network architecture so that it can solve more general Vehicle Routing Problems. Deudon et

al. (2018) show that the combination of artificial neural networks trained using reinforcement

learning with handcrafted heuristics lead to improvements in model performance.

While (Vinyals et al., 2015) was able to show that Pointer Networks are able to be

trained using supervised learning to solve the TSP and then (Bello et al., 2016) showed

that the same architecture was able to be trained using reinforcement learning, it is unclear

how much an artificial neural network’s architecture needs to be specialized for a given

problem in order to be able to approximate the optimal policy. The relationship between

an architectures ability to be trained using supervised learning and its ability to be trained

using reinforcement learning is also a topic which requires future research. These issues are
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fundamental to determining if using artificial neural networks are indeed a more general

approach than using handcrafted heuristic approaches or if the artificial neural networks

need handcrafted architectures specialized to the specific problem of interest.

Motivated by these issues, this paper studies multiple neural network architectures

of varying degree of specialization to the TSP and examines how they perform when trained

using both supervised learning, and reinforcement learning. I also study the effect that small

variations in the choice of hyperparameters will have on model performance. Specifically,

the hyperparameters I will examine are the learning rate and the number of LSTM cells in

each layer. The learning rate determines the step size for which the parameters are updated,

and the number of LSTM cells in each layer affects the number of parameters that are to

be trained. I will also study the impact that small network architecture changes have on

model performance. Specifically, I will examine how changes to the way that the method

determines weights for the input sequence have on performance.

2.3 Experimental design

In this section I propose an experimental design in order to study the affect that

neural net architecture and hyperparameter choice has on both supervised and reinforcement

learning. Please see Appendix B.3 for a brief description of hyperparameter and network

architectures that were studied but not included in this experimental design. In order to

parameterize the policy function I will use a RNN with LSTM cells. This is done by letting

the probability of a given route be determined by the following
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pθ(π|s) = pθ(y1, . . . , yT |x1, . . . , xT ) =
T∏
t=1

pθ(yt|y1, . . . , yt−1, c)

.

Let s = (x1, . . . , xT ) be the problem’s state which is a sequence where xi is the x-y

coordinates for point i. Let yt be the ID of the point traveled to at time t, θ is a vector of

trainable parameters, and c is a context vector which the RNN uses to maintain information

about the state. In order to prevent the policy from choosing a previously chosen location I

store in memory a record of each location chosen and then penalize the probability of moving

to that location so that it cannot be chosen again.

For each neural net architecture and each hyperparameter choice the method will be

trained using both supervised and reinforcement learning. The loss for supervised learning

will be the cross entropy loss between the parameterized policy and a near optimal policy

provided by using the TABU search from Google’s OR-Tools. Reinforcement learning will

be done using the A3C algorithm (Babaeizadeh et al., 2016). For each architecture trained

using reinforcement learning I use a critic network composed of 5 convolutional layers with

a fully connected layer that outputs the final prediction for a given problem state.

In order to evaluate the network architectures sensitivity to hyperparameter choice I

will evaluate each method with three different learning rates and three different numbers of

LSTM cells. The learning rates will vary between 1e-2, 1e-3, and 1e-4 and the number of

LSTM cells will vary between 32, 64, and 128 LSTM cells.

Each method will be optimized using the ADAM optimizer as is standard in the

literature with the learning rate varying between each setting, and I will hold fixed the other
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hyperparameters of the ADAM optimizer by setting β1 = 0.9, β2 = 0.999 and ε = 1e-8.

The methods will be evaluated by determining how many times longer the parame-

terized policies route length is compared to the length of a route found using TABU search.

I will use the average relative length for the last 10,000 problem instances that the method

evaluated after training for 36 hours using 16 cores from Intel’s Haswell CPU architecture.

Each method is also run three times using different initial random seeds.

2.3.1 Unidirectional encoder/decoder

The first major Neural Network architecture that I use is directly from the Neural

Machine Translation (NMT) literature (Sutskever et al., 2014). This is a general architecture

which is designed to be trained using supervised learning and accept a sequence as input and

predict a sequence as output. The parameterization consists of two RNN. The first RNN is

called the encoder and it maps the input sequence xt
T
t=1 into a context vector c. The second

RNN is called the decoder and it maps the context vector to the final output. To construct

the context vector c the following formula is used

ht = f(xt, ht−1)

where ht is the cell’s hidden state, f is an LSTM and c = hT . Once the encoder has

constructed the context vector c the decoder then determines the output probability at each

step using the formulas

pθ(yt|y1, . . . , yt−1, c) = g(yt−1, st, c)
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st = f(st−1, yt−1, ct)

where g(yt−1, st, c) is the softmax of the output of the decoder’s LSTM cells and

f(st−1, yt−1, ct) is how the LSTM cells in the decoder updates its hidden state st. In this

paper pθ(yt|y1, . . . , yt−1, c) is the probability that the route moves to the location y in step t.

2.3.2 Bidirectional encoder/decoder

The second major Neural Network architecture that I use the Bidirectional En-

coder/Decoder framework presented in Bahdanau, Cho, and Bengio (2014). This archi-

tecture is identical to the Unidirectional Encoder/Decoder except that the Bidirectional

encoder consists of both a forward and a backward RNN. The forward RNN reads the in-

put sequence in order from t = 1 to T and the backward RNN reads the input sequence

from T to t = 1. The hidden state ht is then constructed by concatenating the two vectors

ht = [
−→
h>t ;
←−
h>t ]. This architecture is less dependent on the order for which the sequence is

encoded which is beneficial for the TSP because the order that the cities are encoded does

not matter.

2.3.3 Pointer network

The final architecture is from Vinyals et al. (2015) which was constructed specifically

to solve the TSP. In this architecture there is no longer an encoder and the probability of

moving to the next point is simplified to the following

pθ(yt|y1, . . . , yt−1, c) = softmax(c)
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where ht is the LSTM’s hidden state at step t and c is the context vector. The context

vector is calculated using an attention layer.

2.3.4 Attention layer

The NMT literature finds that introducing a mechanism that will focus on part of the

input sequence while decoding would increase performance and Vinyals et al. (2015) found

that due to the spatial nature of the TSP that the attention layer would allow the RNN to

be invariant to the input sequence’s order.

In this paper I will study how the two most common attention mechanisms impact

the performance of each method. The output of the attention mechanism is a new context

vector c that is then input into the decoder. Each attention mechanism is constructed with

the following formulas

ct =
T∑
j=1

αtjhj

αtj =
exp(etj)∑T
k=1 exp(etk)

etj = a(st−1, hj)

where t represents the current step during decoding, k represents the location in

the input sequence, and a is a specific attention mechanism. The first specific attention

mechanism that I use is the Bahdanau Attention Mechanism from Bahdanau et al. (2014)

where etj is computed by
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etj = v>α tanh(Wαst−1 + Uαhj)

where vα ∈ Rn,Wα ∈ Rn×n, Uα ∈ Rn×2n are weight matricies.

The second attention mechanism is the Luong Attention Mechanism from Luong,

Pham, and Manning (2015) where etj is computed by

etj = s>t−1Wαhj

where Wα ∈ Rn×n is a weight matrix. I will refer to these attention mechanisms as

the Luong and Bahdanau attention respectively.

2.4 Results

I this section I analyze the experimental results. First I show that when training using

supervised learning that as the Neural Network Architecture becomes more specialized to

the problem of interest there is an increase in performance per training step holding all else

constant. Then I show that that many methods that could be trained using supervised

learning were not able to be trained using reinforcement learning.

2.4.1 Supervised learning

In this section I discuss the results from training each method with supervised learning

where the labels used to train are obtained through the use of OR-Tool’s TSP solver.
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2.4.1.1 Hyperparameter and architecture choice

In Table 2.1 the results from training the 35 different methods to solve the TSP 20

are presented. It shows that while the methods that used a Unidirectional and Bidirec-

tional encoder were able to achieve near optimal results on the TSP 20 that they had very

inconsistent performance when hyperparameters were slightly changed.

Table 2.1 also shows that Unidirectional Encoder/Decoder was only able to train

using the Luong Attention Mechanism, the Bidirectional encoder/decoder was able to be

trained with both attention mechanisms and the Pointer Network had better performance

when using the Bahdanadu Attention Mechanism. While the experimental evidence shows

that the best run for the Unidirectional and Bidirectional Encoder/Decoder out performed

the best run for the Pointer Network, the Pointer Network was more robust to changes in

the hyper parameters and was more consistently able to achieve a performance within 10%

of the optimal route length and was able to achieve high performance very quickly compared

to the other architectures.

By comparing Figure 2.1, Figure 2.2, and Figure 2.3 we can see that while the best

run that used a Unidirectional Encoder/Decoder architecture was able to achieve optimal

results the average performance improvement per training step is less than the average for

methods that used a Pointer Network architecture. This suggests that the Pointer Network

is more consistently able to achieve performance improvements during the course of training

than the Encoder/Decoder frameworks are.
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2.4.1.2 In-sample variance

The experiment also provides evidence of significant in-sample variance. Identical

runs of a method often yield very different results when only the initial random seed was

changed. This can be seen in Figure 2.1 where the relative length of multiple different

runs of the best performing Unidirectional Encoder/Decoder architecture are plotted over

the time that the method was trained. This plot shows that a method that can yield

optimal performance can have difficulty reproducing the same performance when rerun. This

in-sample variance is also present in the best performing Bidirectional Encoder/Decoder

architecture which can be seen in Figure 2.2. While the Unidirectional and Bidirectional

Encoder/Decoder architectures exhibited a high degree of in-sample variance the Pointer

Network does not. Figure 2.3 shows that the best performing Pointer Network architecture

is able to train consistently to a low relative length but did not have a run that performed

as well as the best Unidirectional or Bidirectional Encoder/Decoder architectures.

The in-sample variance that can occur with these methods can be a major problem for

reproducibility because even if the architecture and hyperparameters are the same different

initial random seeds can cause significant differences in performance for the method. The

in-sample variance is also a problem for further research in this field because the evaluation

of a newly proposed architecture can be noisy which makes tuning hyperparameters difficult.

These problems could be avoided by performing many sample runs and reporting both the

best case and average case for the method however, this can be extremely computationally

intensive and many researchers choose to not report the frequency for which their architecture

trained successfully.



www.manaraa.com

42

2.4.2 Reinforcement learning

In this section I discuss the results from training each method with reinforcement

learning.

2.4.2.1 Hyperparameter and architecture choice

Table 2.2 presents the average relative length of the best run for each method when

trained using reinforcement learning. This table shows that the Unidirectional and Bidirec-

tional Encoder/Decoder networks failed completely to train using reinforcement learning for

any hyperparameter setting. Figure 2.4 and Figure 2.5 show that while these methods were

able to be trained using supervised learning, their performance when first initialized is that

of a random policy and that there is no improvement throughout the course of training. This

behavior is consistent for all the different hyperparameter choices for the Unidirectional and

Bidirectional Encoder/Decoder architectures. These results show that evaluating the effect

that different hyperparameters have on an architecture’s performance is difficult to determine

when only using feedback from the networks performance when trained using reinforcement

learning. This suggests that hyperparameter tuning is not possible when the neural net-

work architecture is not specialized enough for the problem of interest so that reinforcement

learning is possible. This can be a significant barrier for research in this area because when

evaluating the performance of a newly proposed network architecture it is not possible to

determine if poor performance is due to poor hyperparameter choices or if the issue is with

the network architecture. Additionally, the high computational cost of each sample run can

prohibit using the average of multiple runs to evaluate the effect that hyperparameters have
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on performance.

2.4.2.2 In-sample variance

Figure 2.6 presents the relative length of multiple different runs for the best per-

forming Pointer Network architecture. This figure shows that once the neural network ar-

chitecture is specialized enough for a given problem and the hyperparameters are tuned

reinforcement learning can be used to learn the optimal policy function in combinatorial

optimization problems. These results replicate the findings of Bello et al. (2016). This figure

also shows that once hyperparameters are tuned there is not a high degree of in-sample

variance.

Figure 2.7 shows that training is not always monotonic and that the sample variance

observed in the supervised learning can be present in reinforcement learning for some hy-

perparameter choices. This shows that a single training run of a neural network may not be

representative of the potential performance and so multiple runs for each architecture are

needed to evaluate performance.

2.5 Conclusion

This paper has shown that the Unidirectional and Bidirectional neural network ar-

chitectures which were not specialized for the TSP were able to be trained using supervised

learning but they were not sufficiently specialized to be trained using reinforcement learning.

The Pointer Network whose architecture was chosen specifically to solve the TSP was able

to be trained using both supervised and reinforcement learning. This evidence shows that

while reinforcement learning is a general methodology that can be applied to a wide variety
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of problems it is necessary to choose a neural network architecture that is specialized to the

specific problem of interest.

The necessity of choosing neural network architectures specific to a problem of interest

is problematic due to a high degree of in-sample variance, sensitivity to hyperparameter

choice, and that small architecture variations can lead to large performance differences.

This paper showed the effect that changes in the learning rate, number of cells in a network,

and functional form for the attention function has on the network’s performance. Due to the

computational requirements of each run, the number of hyperparameters to be optimized,

and potential variations in network architecture discovering the settings that yield high

performance can be very costly. I showed that when using reinforcement learning there is

less feedback than when using supervised learning for the effect that hyperparameters have

on performance because the majority of options remained stuck at the performance of a

random policy. This suggests that supervised learning may serve as a useful method for the

optimization of hyperparameters before reinforcement learning is attempted.

The comparison between an architectures performance when trained using supervised

and reinforcement learning also showed that a networks ability to approximate the optimal

policy does not guarantee that it will be able to learn the optimal policy using reinforcement

learning. There does however appear to be a relationship between the speed and consistency

with which a neural network architecture is able to be trained using supervised learning and

its ability to be trained using reinforcement learning. An important area of future research

will be to study how consistent this relationship is for different problem statements and

what the limitations are for using supervised learning as a benchmark for an architecture’s
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performance when trained using reinforcement learning.

Tables

Figure 2.1: Multiple runs of the unidirectional encoder/decoder using supervised learning

Attention=Luong, LR=1e-3, Number of cells=128

Each color represents a run of this method with a different random initialization
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Architecture Attention # of cells LR Relative Length
Unidirectional Luong 128 1e-2 2.77
Unidirectional Luong 128 1e-3 1.00
Unidirectional Luong 128 1e-4 1.99
Unidirectional Luong 32 1e-3 2.13
Unidirectional Luong 64 1e-3 1.01
Unidirectional Bah 128 1e-2 2.76
Unidirectional Bah 128 1e-3 2.43
Unidirectional Bah 128 1e-4 2.45
Unidirectional Bah 32 1e-3 2.66
Unidirectional Bah 64 1e-3 2.61
Bidirectional Luong 128 1e-2 2.28
Bidirectional Luong 128 1e-3 1.00
Bidirectional Luong 128 1e-4 2.08
Bidirectional Luong 32 1e-3 1.50
Bidirectional Luong 64 1e-3 1.01
Bidirectional Bah 128 1e-2 2.77
Bidirectional Bah 128 1e-3 1.50
Bidirectional Bah 128 1e-4 2.17
Bidirectional Bah 32 1e-3 1.00
Bidirectional Bah 64 1e-3 2.38
Pointer Luong 128 1e-2 2.22
Pointer Luong 128 1e-3 1.12
Pointer Luong 128 1e-4 1.54
Pointer Luong 32 1e-3 1.51
Pointer Luong 64 1e-3 1.57
Pointer Bah 128 1e-2 1.21
Pointer Bah 128 1e-3 1.06
Pointer Bah 128 1e-4 1.07
Pointer Bah 32 1e-3 1.11
Pointer Bah 64 1e-3 1.07

Table 2.1: Table of supervised learning experimental results
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Figure 2.2: Multiple runs of the unidirectional encoder/decoder using supervised learning

Attention=Luong, LR=1e-3, Number of cells=128

Each color represents a run of this method with a different random initialization
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Figure 2.3: Multiple runs of the unidirectional encoder/decoder using supervised learning

Attention=Bah, LR=1e-3, Number of cells=128

Each color represents a run of this method with a different random initialization
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Architecture Attention # of cells LR Relative Length
Unidirectional Luong 128 1e-2 2.75
Unidirectional Luong 128 1e-3 2.74
Unidirectional Luong 128 1e-4 2.84
Unidirectional Luong 32 1e-3 2.64
Unidirectional Luong 64 1e-3 2.74
Unidirectional Bah 128 1e-2 2.76
Unidirectional Bah 128 1e-3 2.73
Unidirectional Bah 128 1e-4 2.74
Unidirectional Bah 32 1e-3 2.71
Unidirectional Bah 64 1e-3 2.74
Bidirectional Luong 128 1e-2 2.77
Bidirectional Luong 128 1e-3 2.75
Bidirectional Luong 128 1e-4 2.71
Bidirectional Luong 32 1e-3 2.73
Bidirectional Luong 64 1e-3 2.74
Bidirectional Bah 128 1e-2 2.69
Bidirectional Bah 128 1e-3 2.74
Bidirectional Bah 128 1e-4 2.75
Bidirectional Bah 32 1e-3 2.74
Bidirectional Bah 64 1e-3 2.75
Pointer Luong 128 1e-2 2.64
Pointer Luong 128 1e-3 1.22
Pointer Luong 128 1e-4 1.31
Pointer Luong 32 1e-3 1.27
Pointer Luong 64 1e-3 1.21
Pointer Bah 128 1e-2 2.65
Pointer Bah 128 1e-3 1.03
Pointer Bah 128 1e-4 1.12
Pointer Bah 32 1e-3 1.15
Pointer Bah 64 1e-3 1.04

Table 2.2: Table of reinforcement learning experimental results
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Figure 2.4: Multiple runs of the unidirectional encoder/decoder using reinforcement

learning

Attention=Luong, LR=1e-3, Number of cells=128

Each color represents a run of this method with a different random initialization
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Figure 2.5: Multiple runs of the unidirectional encoder/decoder using reinforcement

learning

Attention=Luong, LR=1e-3, Number of cells=128

Each color represents a run of this method with a different random initialization
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Figure 2.6: Multiple runs of the unidirectional encoder/decoder using reinforcement

learning

Attention=Bah, LR=1e-3, Number of cells=128

Each color represents a run of this method with a different random initialization
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Figure 2.7: Multiple runs of the unidirectional encoder/decoder using reinforcement

learning

Attention=Luong, LR=1e-4, Number of cells=128

Each color represents a run of this method with a different random initialization
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APPENDIX A
APPENDIX TO CHAPTER 1

A.1 Avoiding the curse of dimensionality in the action space

In order to reduce the computational cost caused by a curse of dimensionality in the

action space it is necessary to either reduce the number of decision variables, or reduce the

number of function evaluations required to find the policy that maximizes the objective. In

the Ericson and Pakes (1995) framework it is common to use a static-dynamic breakdown

to reduce the number of decision variables. A static-dynamic breakdown means that the

model is constructed in such a way that in the dynamic industry firms to choose the same

prices that they would choose in a single period model in equilibrium. If this is the case

then the profitability for firm 1 in each state only has to be computed once and then stored

in memory. In some settings it is not desirable to use a static-dynamic breakdown since the

pricing decision does influence the dynamics of the industry. This is the case in dynamic

network industries where the price of a product in period t affects the market share for each

firm in t+1 (Chen & Doraszelski, 2006; Chen, Doraszelski, & Harrington Jr, 2009; Mitchell

& Skrzypacz, 2006).

If there several decision variables, a high degree of accuracy is required, or if function

evaluations of f(Si, µ
k
i,1 are costly then it is advantageous to use more sophisticated methods

to find the optimal policy in a state. The first issue that arises is if the decision variable is

continuous. Exit and entry decisions are naturally modeled as a discrete 0 for exit and 1 for

remaining in the industry, but many other policy decisions, such as how much to invest, or
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the price charged for a product are most naturally modeled as a continuous variable. Since in

the Ericson and Pakes (1995) framework the state space is discretized in order for H(S) from

Equation 1.1 to be well defined it is necessary to map continuous actions to discrete future

states. This is because the objective function f(S, µ) contains the evaluation of the expected

value of future payoffs conditional on the current state and actions. In this expectation the

value function V : S ′ ∈ {SNi } → R can only be evaluated if S ′ ∈ {SNi } where S ′ = h(S, µ).

The transition function h(S, µ) maps the policy µ and discrete states S to discrete states S ′.

In the numerical example used in this paper the transition function represents the change

in quality a firm receives as a function of their current quality and level of investment. The

transition function is restricted to increasing quality by one level, remaining at the current

level, or decreasing quality by one level and the probability of each event is conditional on

the level of investment, x.

In order to discuss numerical optimization methods for it is helpful to rewrite the

right hand side of the Bellman equation as

H(S) = max
µ

f(S, µ)

s.t. g(S, µ) = 0,

h(S, µ) ≥ 0

(A.1)

The most straight forward approach to solving this problem is to use a simple grid

search. To do the grid search you choose a grid for each element in the vector µ and then

evaluate f at each point in the grid and then choose the action that has the largest value.

While this method will find the global maximum of f up to the accuracy limit imposed by
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how fine the grid is, this method requires far too many function evaluations to be used in

most contexts.

The numerical analysis literature has produced many algorithms that have far better

convergence rates to the optimal action and there are many efficiently implemented software

packages that makes using these algorithms very easy. However, the run time required to

find the optimal action varies significantly based on which method was chosen, the problem’s

structure, and the specific way that the algorithm was implemented in a software package.

The first numerical optimization algorithm I used for solving this problem was the

method presented in Wachter and Biegler (2006) and implemented in the C++ library

IPOPT. This method is a derivative free algorithm for solving constrained optimization

problems and is also one of the most standard computational methods for solving non-linear

optimization problems with constraints. It is also the default method for MATLAB’s func-

tion fmincon. When I used this algorithm for the numerical example, it had convergence

issues and the software implementation was not suited to dynamic programming applica-

tions. This is because dynamic programming applications require the numerical method to

be applied inside a for loop for the value function iterations and inside a for loop that is

iterating over each approximation node. This means that the algorithm and software im-

plementation should have limited overhead and not require access to a solver outside of the

source code which the IPOPT library did.

The C++ library NLOPT introduced in Johnson (2017) does not have the implemen-

tation issues that IPOPT has. This library provides access to many different optimization

methods. The numerical methods to solve constrained non-linear optimization problems
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can be categorized into several categories. The first category, global optimization focuses

on finding the global maximum. For example, the DIRECT algorithm presented in Jones,

Perttunen, and Stuckman (1993) relies on the systematic division of the search domain into

smaller and smaller rectangles. Methods in this category are typically very slow and thus

are not tractable for the applications of interest.

The second category is local derivative-free optimization algorithms. I compared

NLOPT’s implementation of the Constrained Optimization by Linear Approximations (COBYLA)

presented in (M. Powell, 1998; M. J. Powell, 1994) to IPOPT’s method. While methods in

this category are not guaranteed to find the global optimum they are much faster and perform

well on convex problems. I found that COBYLA was able to converge however the method

required approximately 50 function evaluations per state per value function iteration to find

the optimal action within a tolerance of 1e-5.

The third category is local gradient-based optimization algorithms. These methods

require the analytical gradient of the optimization problem with respect to the decision

variables to be supplied. This gradient is often easy to analytically derive and supply to the

algorithm in the applications of interest. These methods have been shown to converge at

a much faster rate than derivative-free algorithms (Bradie, 2006). I compared the L-BFGS

algorithm presented in (Liu & Nocedal, 1989; Nocedal, 1980) with the COBYLA method

and found that L-BFGS required approximately 5.6 function evaluations per state per value

function iteration to find the optimal action within a tolerance of 1e-5. Local gradient-based

optimization algorithms also do not suffer from the curse of dimensionality in the action

space which makes them attractive for applications where there are hundreds of decision
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variables and many constraints. This advancement in numerical analysis allows economic

researchers to model firms with more realistic and complicated action spaces.

These methods all improve upon the simple grid search algorithm and depending

on the context dramatically reduce fevals. The derivative free methods however will still

suffer from the curse of dimensionality in the action space that occurs when there are many

decision variables. In order to overcome this issue it is recommended to analytically supply

the gradient of f with respect to µ to the algorithm. If you supply the analytical gradient

then it is possible to use algorithms in the local gradient-based optimization category which

have been shown to further reduce fevals and also overcome the curse of dimensionality in

the action space.

A.2 Plots

In each plot the top row is the value function, the middle row is the policy function for

investment, and the bottom row is the policy function for product price. Each column shows

a different view of the 3D graph where the first column shows firm 2’s quality increasing on

the left and firm 1’s quality increasing on the right. The middle column shows a rotation of

the first column so that firm 1’s quality is increasing to the right and the right column the

rotation such that firm 1’s quality is decreasing to the right. The top row was generated by

evaluating the value function approximation on a grid of 150x150 points, and coloring the

points based on their value. The middle and bottom rows cannot be evaluated in this way

since the algorithm presented do not interpolate the policy functions. Since it is hard to

see the structure of the policy functions when only examining discrete points I interpolated
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the policy functions using a Delaunay triangulation method from the package deldir in R

(Turner, 2017).

Figure A.1: The equilibrium value, investment policy and pricing policy fit on an 18x18 grid

with 12 degree multidimensional Chebyshev polynomials
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Figure A.2: The equilibrium value, investment policy and pricing policy fit on an 12x12 grid

with 12 degree multidimensional Chebyshev polynomials
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Figure A.3: The equilibrium value, investment policy and pricing policy fit on an 6x6 grid

with 6 degree multidimensional Chebyshev polynomials
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Figure A.4: The equilibrium value, investment policy and pricing policy fit on an 18x18 grid

using a neural net with a single fully connected layer with 324 nodes and tanh activation

function
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Figure A.5: The equilibrium value, investment policy and pricing policy fit on an 12x12 grid

using a neural net with a single fully connected layer with 144 nodes and tanh activation

function
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Figure A.6: The equilibrium value, investment policy and pricing policy fit on an 6x6 grid

using a neural net with a single fully connected layer with 144 nodes and tanh activation

function
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A.3 Multidimensional complete Chebyshev polynomial approximation

This section is reproduced from Cai and Judd (2015) for convenience. Let the domain

for the approximation be

{x = (x1, . . . , xd) : xmin,j ≤ xj ≤ xmax,j, j = 1, . . . , d},

for some real numbers xmin,j and xmax,j with xmax,j > xmin,j for j = 1, . . . , d. Let

xmin = (xmin,1, . . . , xmin,d) and xmax = (xmax,1, . . . , xmax,d). Then we denote [xmin,xmax] as

the approximation domain. Let α = (α1, . . . , αd) be a vector of non-negative integers. Let

Tα(z) denote the product
∏

1≤j≤d Tαj(zj) for z = (z1, . . . , zd) ∈ [−1, 1]d. Let

Z(x) =
(2x1 − xmin,1 − xmax,1

xmax,1 − xmin,1
, . . . ,

2x1 − xmin,d − xmax,d
xmax,d − xmin,d

)
for any x = (x1, . . . , xd) ∈ [xmin,xmax].

Using this notation, the degree n complete Chebyshev approximation for V (x) is

V̂n(x; b) =
∑

0≤|α|≤n

bαTα(Z(x)),

where |α|=
∑d

j=1 αj. The number of terms with 0 ≤ |α|=
∑d

j=1 αi ≤ n is
(
n+d
d

)
for

the degree n complete Chebyshev approximation in Rd.
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APPENDIX B
APPENDIX TO CHAPTER 2

B.1 Policy Gradient Method

The policy gradient theorem states that if we let

J(θ)=̇vπθ(s0)

denote the true value function for πθ, the policy determined by θ, then

∇J(θ) =
∑
s

µπ(s)
∑
a

∇πθ(a|s)rπθ(s, a)

where rπ(s, a) is the reward from taking action a in state s, and µπ(s) is the expected

number of time steps t on which St = s given s0 and following πθ (Sutton, Barto, et al.,

1998). This theorem is valuable because we can sample this expected value which is done in

the REINFORCE algorithm where

∇J(θ) = Eπθ
[
βtRt

∇θπθ(At|St)
πθ(At|St)

]
where Rt is the observed reward from step t to the end, At is the sampled action in the

sampled state St, and β is the discount parameter (Williams, 1992). Because software imple-

mentations of neural networks use Autograd which will automatically analytically compute

the gradient of the network with respect to its trainable parameters θ through backpropa-

gation this equation is now easy to compute.

Improvements to this algorithm include the addition of a separate trainable network

called a critic network. This network is used to decrease the variance of the policy parameter
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update. The addition of a critic network changes the gradient calculation to

∇θJ(θ|s) = Eπ∼pθ(.|s)

[
(L(π|s)− v̂φ(s))∇θ log pθ(π|s)

]
where v̂φ(s) is a neural network parameterized by φ.

Algorithm 4 Actor-Critic Method

procedure Given pθ(.|s), v̂φ(s)

Initialize policy parameter θ and state-value parameters φ

while Training do

Generate an episode S0, A0, r1, . . . , ST−1, AT−1, rT following πθ(·|·).

for t = 1, . . . , T do

Rt ← return from step t

φ← ADAM(φ,∇φ ‖Rt − v̂φ(St)‖)

θ ← ADAM(θ, βt(Rt − v̂φ(St))∇θ log(πθ(At|St)))

end for

end while

end procedure

This method can be parallelized in order to more efficiently use multiple CPU threads.

This method was introduced in Mnih et al. (2016) and is called Asynchronous Advantage

Actor-Critic (A3C) and has been shown to increase the speed for which the policy can be

trained and the parallelization has also been shown to help stabilize the parameter updates.
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See (Sutton et al., 1998) for a more detailed introduction to the REINFORCE, and Actor-

Critic methods and see (Mnih et al., 2016) for a detailed description of A3C.

B.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural networks where output

of a cell is directed back as input in to the cell again. This allows the network to exhibit

temporal dynamic behavior for a sequence. Unlike feedforward neural networks RNN’s

maintain a hidden state ht that is changed as the network iteratively processes input which

allows the network to process sequences.

In this paper I use long short-term memory (LSTM) as the central component of my

RNN. LSTM cells have parameterized functions for processing the input xt, updating the

cell’s hidden state ht, and determining the output of the cell yt (Hochreiter & Schmidhuber,

1997). These functions are called the input gate, forget gate, and output gate respectively.

The input gate is a sigmoid layer which decides which elements will be potentially added to

the current hidden state as a function of the previous hidden state and the current input.

Next the forget gate is composed of a sigmoid layer that decides which components of the

cell’s hidden state to keep for the next step as a function of the previous cell’s hidden state

and the current input. Finally, the output gate determines the output of the cell as a function

of the input and the new hidden state. The parameters of these functions are then trained

to minimize a loss function using a gradient decent optimizer such as ADAM.

Please see http://colah.github.io/posts/2015-08-Understanding-LSTMs/ for an intro-

duction to LSTM Networks.
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B.3 Additional Architecture and Hyperparameter Choices

Due to the computational requirements of each sample run I excluded from this

experimental design some architecture and hyperparameter choices that are of interest for

this problem. This appendix lists hyperparamters that were tuned before the experiment

was conducted and neural network architectures that were studied but not included in the

experimental design.

While the learning rate used in the ADAM optimizer is the most commonly changed

hyperparameter for tuning performance, β1, β2 and ε are also hyperparameters that should

be tuned for the problem of interest. The values chosen for these parameters were determined

by using the settings recommended by Google’s Tensorflow software. I chose to hold fixed

the mini-batch size used for training at 10 since I observed the fastest training with this

setting after trying larger and smaller batch sizes. I studied the use of an exponential

moving average as a critic network however, the networks trained with this critic network

consistently became stuck in local minima and thus I did not include this critic network in

the experimental design. I also studied the use of a stochastic decoder to replace the greedy

decoder and used the same methodology that (Bello et al., 2016) used to vary the degree

of exploration with a softmax temperature parameter. I found that this only increased the

training time without qualitatively changing the performance and so this architecture change

was not included in the experiment. The addition of an embedding layer between the state

and input into each LSTM cell using the same methodology that words are embeded in the

NMT literature lead to a decrease in performance and thus was not included. The use of

the Proximal Policy Objective introduced in (Schulman et al., 2017) did not perform better
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than the traditional REINFORCE objective and so I did not include this methodology in the

experimental design. Grid LSTM cells introduced in (Kalchbrenner, Danihelka, & Graves,

2015) were not able to train using supervised or reinforcement learning and so were excluded

from this experimental design. Stack Bidirectional LSTM networks did not yield qualitatively

different results from the Bidirectional LSTM network and thus were excluded from this

experiment. In order to increase performance once the network was trained I studied using

a beam search decoder with various beam widths. This decoder was not able to increase

performance due to an inability to preserve the route obtained through greedy decoding as

one of the potential routes. I examined the use of a sampling decoder which used evaluated

the stochastic decoder multiple times and selected the route with the shortest length. This

was able to yield performance improvements but did not qualitatively change the results from

the experiment and so I did not include this decoder architecture. I found that the use of

clipping the gradient of the neural network did not lead to an improvement on the networks

ability to be trained. Deudon et al. (2018) found that the use of Principal Component

Analysis to reorder the state was beneficial however, the addition of this preprocessing step

made the architectures I studied unable to train successfully.
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